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Abstract

Analyses of discharge series, precipitation fields and flood producing atmospheric cir-
culation patterns reveal that two governing flood regimes exist in the Mulde catchment
in south-eastern Germany: frequent floods during the winter and less frequent but
sometimes extreme floods during the summer. Differences in the statistical param-5

eters skewness and coefficient of variation of the discharge data can be found from
west to east and are discussed in the context of landscape parameters that influence
the discharge. Annual maximum discharge series were assigned to the triggering
Großwetterlage in order to evaluate which circulation patterns are likely to produce
large floods. It can be shown that the cyclone Vb-weather regime generates the most10

extreme flood events in the Mulde catchment, whereas westerly winds produce fre-
quently small floods. Vb-weather regimes do not always trigger large flood events
in the study area, but large floods are mostly generated by these weather patterns.
Based on these findings, it is necessary to revise the traditional flood frequency analy-
sis approach and develop new approaches which can handle different flood triggering15

processes within the dataset.

1 Introduction

Limited data on extreme and thus rare flood events complicate the accurate estimation
of design discharges (e.g. Francés, 2001; Benito et al., 2004; Merz and Thieken, 2005).
Numerous approaches have been developed for flood estimation, which include statis-20

tical approaches such as flood frequency analysis (FFA), the use of envelope curves
as well as rainfall-runoff modelling with hydrological models. The focus in this study will
be on the FFA.

The most common methods for FFA use annual maximum series (AMS) and peak
over threshold series (POT) (Institute of Hydrology, 1999). AMS include one value for25

each hydrological year, whereas POT can also contain more than one value within a

590

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
4, 589–625, 2007

Flood hazard and
triggering circulation

patterns

T. Petrow et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

hydrological year, depending on the threshold. The AMS and POT series can also
be extracted for summer or winter seasons, when, for instance, one flood process
type (e.g. floods triggered by snow melting) is of special interest. Several distribution
functions can be fitted to the data. These include for instance the Gumbel, Weibull, 2-
parametric Log Normal, Generalized Extreme Value, General Logistics, 3-parametric5

Log Normal, Pearson type III, General Pareto distribution functions, which can be es-
timated with the Method of Moments, the maximum likelihood estimation or the L-
Moments estimation (Hosking and Wallis, 1997; Institute of Hydrology, 1999). Although
several distribution functions and possibilities, which data to integrate, exist, large un-
certainties are still remaining when estimating extreme events. There is much debate10

about the minimal length of the data series and whether or not it is advantageous to
use very long series, which may not reflect stationary conditions (e.g. Bárdossy and
Pakosch, 2005; Khaliq et al., 2006). Moreover, it is questionable whether or not an
AMS is stationary when the discharges reflect different flood producing processes.
Usually, continuously measured time series with a length of at least 30 years of dis-15

charge and/or water level at gauge stations serve as the basis for the calculation and
design of flood protection measures (DVWK, 1999). Independence, homogeneity and
stationarity are required characteristics of the data to legitimate flood frequency anal-
ysis (Stedinger, 2000; Kundzewicz and Robson, 2004). However, often these criteria
are not satisfied due to climatic change and/or anthropogenic influence (Webb and Be-20

tancourt, 1992; Klems, 1993; Jain and Lall, 2001; Sivapalan et al., 2005; Svenson et
al., 2005; Khaliq et al., 2006). Independence is almost always given, when analyzing
annual maximum series, whereas partial series have to be carefully examined in order
to avoid miscounting one flood event as two. Stationary conditions seldom exist due
to changes in climate, land-use or in the vulnerability of the study area, although these25

are often assumed (Merz, 2006). Moreover, the dynamics of atmospheric processes
and flood generation have to be taken into account in the study of stationarity and
independence and further in the FFA (Merz and Blöschl, 2003; Sivapalan et al., 2005).

The relationship between climate and flood generation has been of growing interest
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and study (Webb and Betancourt, 1992; Kästner, 1997; Jain and Lall, 2000; Bárdossy
and Filiz, 2005; Steinbrich et al., 2005; St. George, 2007). Steinbrich et al. (2005) an-
alyze the correlation between circulation patterns and heavy rain for the south-western
part of Germany (Baden-Wuerttemberg). Kästner (1997) found that only five different
weather patterns are susceptible to produce flood events in Bavaria. Three catchments5

in southern Germany (Bavaria), which have different discharge characteristics and are
differently influenced by snow melting, were studied. Kästner (1997) found the Vb-
weather regime to be most susceptible for the generation of large floods. This weather
system is a low pressure system that moves very slowly from the Gulf of Genoa north-
wards. It can accumulate large amounts of moist and warm air over the Mediterranean10

Sea, which is transformed into large precipitation amounts that fall along the northern
slopes of the Alps and mountain ranges in Central and Eastern Europe. It is therefore
interesting to analyze the relationship of circulation patterns and flood generation in the
study area.

More information about flood generating processes can be gained when extending15

the study from one gauge station to the hydrological behaviour of sub-catchments and
neighbouring regions (Harlin and Kung, 1992; Merz et al., 2006; Ouarda et al., 2006).
Harlin and Kung (1992) extract for each sub-catchment the most extreme measured
events and simulate the simultaneous occurrence of the floods which has not been
observed yet. Of special interest for the flood hazard estimation of ungauged areas is20

also the regional FFA which incorporates flood process information from neighbouring
catchments (e.g. Stedinger, 1983; Hosking and Wallis, 1997; Institute of Hydrology,
1999). Regionally valid distribution functions are fitted to data of preferably independent
gauges within a region, which exhibit, in general, better fits (Merz, 2006).

In this paper the flood discharge characteristics of the Mulde catchment in south-25

eastern Germany are discussed from different points of view. Data of 15 discharge
gauges are analyzed according to stationarity, their spatial distribution of the statistical
moments and the relationship between landscape characteristics and flood peaks. Ad-
ditionally, the relationship between the dominating weather pattern in Europe and the
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flood generation in this catchment is discussed.

2 Study area and data

2.1 Study area

The Mulde catchment is a sub-catchment of the Elbe River basin in south-eastern
Germany. The southern boundary is marked by the mountain ranges of the Erzgebirge,5

which coincides with the Czech – German border. The catchment has a total area of
6171 km2 (at the gauge Bad Düben) and has three large sub-catchments (Zwickauer
Mulde, Zschopau, Freiberger Mulde), which drain the upper, mountainous part of the
catchment (Fig. 1). Within only 20 kilometers, the tributaries Zschopau and Freiberger
Mulde disembogue near the gauge Erlln (gauge 13, Fig. 1) into the Zwickauer Mulde10

and form the Vereinigte Mulde (“Joined Mulde”), which disembogues near the city of
Dessau into the Elbe River.

The elevation ranges from 52 m to 1213 m a.s.l. with approx. 2/3 of the area being
lowlands and 1/3 mountains (500–1213 m a.s.l.) (Fig. 1). The mountain ranges in the
south cause fast runoff responses to rainfall events in the tributaries, whereas in the15

major part of the catchment slower runoff responses dominate. The annual precipita-
tion ranges from 500 mm in the lowlands to 1100 mm in the mountain ranges.

The landscape characteristics of the catchment such as geology, soil, hydro-geology,
land-use and relief parameters were evaluated to gain information about their influence
on the discharge behaviour. Therefore, the catchment was split into zones with similar20

soil, geology and groundwater reservoirs. These zones correspond to the elevation:
In the upper part of the Erzgebirge (sub-catchments Zwickau-Poelbitz, Lichtenwalde,
Berthelsdorf; discharge locations 3, 9, 11 in Fig. 1), Cambisols can be found with
underlying volcanic rocks which have no groundwater reservoirs. In the western part
along the Zwickauer Mulde some smaller groundwater reservoirs exist which are fed25

from sand-mudstone interbedded stratification. Noteworthy groundwater areas can
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only be found in the northern lowlands. Along the Vereinigte Mulde also alluvial clays
are present.

The land-use is dominated by forests and agriculture (Fig. 2). The mountains are
mainly covered by forests, and intensive agriculture is found in the lowlands. The
proportion of agriculturally-used areas increases from west to east and south to north,5

whereas the percentage of forest decreases. Urban areas only play a role in the sub-
catchment Zwickauer Mulde with two larger cities (Zwickau, Chemnitz). Meadows and
pastures are homogenously distributed across the area with a slightly larger area in
the upper middle Erzgebirge (Fig. 2).

The region has a vital history of large flood events. First written documents about10

floods, the corresponding water levels and damage can be found from the 9th century
onward and more detailed documents starting from the 14th century (Pohl, 2004). It
is noteworthy that both large winter floods with ice blockage as well as summer floods
from torrential storms or long lasting frontal rains caused high damages.

During the last 100 years, three extreme flood events occurred in the study area,15

namely in July 1954, July 1958 and August 2002. These events will be analyzed in
more detail in this paper. All of them were caused by large torrential storms. The
floods in 1954 and 2002 were triggered by Vb-weather systems. Both flood events in
the fifties caused high damage in different parts of the catchment, whereas in 2002
the entire catchment was affected. On the 12 August 2002, a daily precipitation height20

of 312 mm was measured in Zinnwald-Georgenfeld (near the study area) – the largest
value in Germany since the beginning of regular measurements (DWD, 2003; Ulbrich,
2003). This flood caused a damage of 11 600 Million €in Germany alone (DKKV, 2004;
Thieken et al., 2006).

As a consequence of the flood history, flood defence measures play an important role25

and have been extended until the present day (DKKV, 2004). Numerous flood retention
basins and dams were constructed, which are mainly located in the upper part of the
catchment, and influence significantly the discharge downstream. Altogether, 77 dams
protect the catchment against flooding, provide drinking water and produce electricity.
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22 dams belong to the Class 1 of the Saxonian Dam Classification which comprises
constructions with dam heights of more than 15 m or reservoir volumes of at least
1 Mio. m3 (LfUG, 2002).

2.2 Data

2.2.1 Discharge data5

Over 60 discharge and water level gauges exist in the Mulde catchment. The earliest
measurements at regular intervals began in 1910 at two gauges. In order to evaluate
the influence of dam constructions before including data from the downstream dis-
charge gauge into the dataset, daily differences of inflow versus outflow of five large
dams for the period 1991–2002 were compared. More information from the dam au-10

thorities was not available. Inflow and outflow flood peaks were compared and the
downstream stations were excluded from the dataset if the flood peak differences were
greater than 10%, and if there were at least five affected flood events during this 10
year period. Additionally, daily time series of discharge gauges that are in the immedi-
ate vicinity of a dam were compared to daily discharge data from neighbouring gauges15

at other tributaries. Time series of discharge gauges that did not reflect the hydrograph
at the compared gauge station were excluded from the dataset. In order to evaluate
the influence of a dam before including data from the downstream discharge gauge
into the dataset, daily differences of inflow versus outflow of five large dams for the
period 1991–2002 were compared. More information from the dam authorities was20

not available. Inflow and outflow flood peaks were compared and the downstream sta-
tions were excluded from the dataset if the flood peak differences were greater than
10%, and if there were at least five affected flood events during this 10 year period.
Additionally, daily time series of discharge gauges that are in the immediate vicinity
of a dam were compared to daily discharge data from neighbouring gauges at other25

tributaries. Time series of discharge gauges that did not reflect the hydrograph at the
compared gauge station were excluded from the dataset. Annual maximum discharge
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series (AMS) (hydrological year from November to October) were extracted from daily
maximum discharges.

A subset of discharge gauges was selected for this analysis which met the following
criteria: 1) the time series must have a length of at least 40 years, 2) the sub-catchment
area is larger than 100 km2, 3) the flood AMS exhibits no trend, 4) the discharge gauges5

are distributed across the catchment and have a distance of at least 3 km among each
other.

15 discharge gauges meet these criteria; they are listed in Fig. 1 and Table 1. For
better readability, the gauge stations are listed in all tables in the same order beginning
with those located in the south-west (Zwickauer Mulde), then progressing north and10

east (Zschopau, Freiberg Mulde) and ending with gauges located in the Vereinigte
Mulde (cf. Fig. 1).

2.2.2 Precipitation data

Precipitation data were available from the German Weather Service (DWD) at 49 sta-
tions in and around the Mulde catchment (see Fig. 3). The data cover the time period15

between 1952 and 2002 on a daily basis. Daily areal precipitation was calculated
based on cubic interpolation for each of the 15 sub-catchments (corresponding to the
discharge stations) for the comparison of precipitation and discharge.

2.2.3 Atmospheric circulation patterns

Information about the predominant European circulation pattern for each day was avail-20

able from the “Catalogue of Großwetterlagen1 in Europe 1881–2004” (Gerstengarbe
and Werner, 2005). The catalogue distinguishes three large circulation patterns, which
are divided into 30 different Großwetterlagen (one is classified to be a “transition class”)
(Table 2).

1Großwetterlage: weather pattern with a certain atmospheric pressure distribution
(500 hPa), geographical extent and direction.

596

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
4, 589–625, 2007

Flood hazard and
triggering circulation

patterns

T. Petrow et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The circulation patterns comprise the zonal circulation form, the mixed circulation
form as well as the meridional circulation form. For every day a Großwetterlage is as-
signed to be the dominant one for Europe. Through the specific distribution of lows and
highs over Europe, it may therefore be possible that the dominant Großwetterlage of
a particular day is not necessarily representative for the Mulde catchment. This is for5

instance the case, if the Mulde catchment is still under the influence of a weakened low,
which is however already situated above Eastern Europe, whereas the dominating Eu-
ropean Großwetterlage is above Western Europe. However, other than this catalogue,
more detailed meteorological data for the study area were not available.

3 Methodology10

3.1 Flood frequency analysis

The distribution-free and non-parametric Mann-Kendall test for Trend (one-sided test;
significance level: α=0.05) was used for the detection of trends in the data. Since
small trends in the data may not be detectable, for instance by the Mann-Kendall test
(Bárdossy and Pakosch, 2005), a regional test of stationarity was conducted with all15

15 data sets (Lindström and Bergström, 2004). To this end, several data series from
the same region, that cover the same period of measurements, are tested jointly (also
with the Mann-Kendall test). For comparison, the discharge data were divided by the
MHQ (mean flood discharge) of the respective series. AMS of 13 gauge stations with
data from 1936 to 2002 and of two gauges with data from 1961 to 2002 were included.20

Independence of the data was ensured by using AMS data, which were also checked
for possible dependent values around the turn of a hydrological year. For this, a thresh-
old time of 7 days between two AMS floods was included, which guarantees the inde-
pendence of two close-by flood events.

Flood frequency analyses were performed with seven different distribution functions25

(Gumbel, Weibull, 2-parametric LogNormal, Generalized Extreme Value, General Lo-
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gistics, 3-parametric LogNormal, Pearson type III) with both the Method of Moments
and with the L-Moments (Hosking and Wallis, 1997; Institute of Hydrology, 1999). The
GEV (Generalized Extreme Value) distribution function and the General Logistics distri-
bution function (both with L-Moments) revealed the best fits based on the Kolmogorov-
Smirnov-Test and visual examination relative to the empirical probabilities. Emerging5

consensus can be found in many studies worldwide that the GEV distribution reveals
the best fits (Pearson, 1991; Onoz and Bayazit, 1995; Vogel and Wilson, 1996; Dou-
glas and Vogel, 2006). The Institute of Hydrology (1999) also describes the “theoretical
and historical importance” of the GEV. Hence, subsequent analyses were performed
using the GEV.10

3.2 Spatial distribution of flood characteristics

The spatial distributions of the statistical moments of the AMS, such as skewness
and coefficient of variation, were analyzed to detect possible differences among sub-
catchments. The spatial extent and distribution of the three most extreme flood events
(July 1954, July 1958, August 2002) were analyzed in more detail. For every event and15

gauge station, return periods (GEV, L-Moments) were calculated. These estimates
were then assigned to each river segment upstream of the 15 gauge stations in order
to analyze the flood characteristics in a spatially explicit manner.

Moreover, the AMS of 11 gauge stations with data from 1929 to 2002 (74 years)
were studied with respect to the spatial distribution and magnitude of flood events. To20

this end, the number of different flood events per year in the catchment was analyzed.
If all 11 gauges have their highest discharge of a certain year on the same day (+/–1
day), the number of flood events for that year will be one. The other extreme is that all
gauges have their highest peak at another time of the year. In that case, the number of
flood events for that year is 11.25
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3.3 Relationship between precipitation maxima and discharge maxima

The relationship between precipitation maxima and discharge maxima was studied
in more detail. Areal precipitation was calculated for the three large sub-catchments
(Zwickauer Mulde: gauge Wechselburg; Zschopau: gauge Lichtenwalde; Freiberger
Mulde: gauge Nossen) and the Vereinigte Mulde at the gauge Golzern. Precipitation5

sums of 24 h, 48 h and 72 h of the flood events were compared to discharge maxima.
The four discharge stations are distributed over the entire catchment and represent
the large sub-catchments. Rainfall AMS were extracted from the precipitation data and
then compared on a seasonal basis to the discharge AMS to determine, how many
large precipitation events are reflected in the discharge AMS.10

3.4 Circulation pattern and flood generation

Daily data of Großwetterlagen between 1911 and 2002 were analyzed in order to obtain
an overview about the seasonal distribution and frequency of the circulation patterns in
Europe. Additionally, the Großwetterlagen, which triggering the AMS discharges, were
manually assigned to the AMS flood data of the gauge Golzern. The gauge at Golzern15

on the Vereinigte Mulde was selected to be representative for the entire catchment. It
comprises 88% of the entire catchment and has a long time series (1911–2002).

From the AMS data, empirical probabilities were assigned to the flood events and
then combined with the Großwetterlagen data. With this information, it is possible to
estimate the potential of a Großwetterlage to generate a flood of a certain return period.20

4 Results

4.1 Testing for trends in the flood AMS

Stationarity was tested for all 15 discharge AMS with the one-sided Mann-Kendall test
for increasing trend (significance level α=0.05). No trends were detected. The trend
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test for regional stationarity was performed with the normalized AMS of the 15 gauge
stations. As Fig. 4 shows, the data exhibit a very small positive trend in the regional
trend analysis. When the flood event from August 2002 was excluded from the data,
the slightly positive trend became slightly negative. The Mann-Kendall test showed no
trend (significance level α=0.05). Therefore the data can be used for flood frequency5

analysis.

4.2 Seasonal occurrence and magnitude of floods

Two dominant flood process types in the Mulde catchment can be extracted from the
data. During March and April, a first peak in the discharge AMS occurs during snow
melt and “rain on snow” flood events. The second peak occurs in July and August,10

when large torrential storms traverse the area (Table 3). At all 15 discharge stations
winter floods (November–April) occur more often than summer floods. In the upper
western part of the Erzgebirge (corresponding to the gauges at Aue, Niederschlema,
Zwickau), the percentage of summer and winter floods is almost equal (e.g. Aue: 46%
summer floods; 54% winter floods), whereas in the eastern part of the catchment winter15

floods have larger percentage (59%–69%).
Figure 5 shows the monthly distribution of the discharge AMS at the four gauges at

Aue, Lichtenwalde, Nossen and Golzern. In the diagrams, discharges are plotted as
circle histograms (12 axes for 12 months; clockwise). The distance of each point from
the centre represents the magnitude of the flood event. The winter floods are usually20

small events with a low return period. They constitute only 20% of the largest floods
(8–16%). Summer flood events, on the other hand, are less frequent, but cover a larger
proportion of extreme events (26–39%). In Fig. 6 the data of Table 3 are summed up
for all 15 gauges. Additionally, the monthly distribution of the 20% largest flood events
is shown. From these analyses we can conclude that summer flood events play an25

important role for the flood hazard estimation of extreme events.
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4.3 Spatial distribution of flood characteristics

The discharge data were analyzed with respect to the spatial distribution of statistical
moments (skewness, coefficient of variation). Surprisingly, more similar statistical mo-
ments were found along the tributary rivers rather than according to the elevation the of
the gauge locations. The assumption could be made that the gauges in the mountains5

of the Erzgebirge can be grouped together to exhibit similar statistical moments as well
as the gauges in the lowlands. However, an increase of the statistical moments occurs
from west to east that corresponds to the division of the sub-catchments. Figure 7
shows the spatial distribution of the skewness (A) and the coefficient of variation (B) for
the 15 gauges. It can be clearly seen that the sub-catchment of the Zwickauer Mulde10

is more homogeneous in its statistical moments. Moreover, the range of the skewness
and the maximum skewness value are lower in the Zwickauer Mulde sub-catchment
(2.6–3.0) than in the other sub-catchments (3.0–6.7).

The AMS of 11 gauge stations with data from 1929 to 2002 (74 years) were studied
with respect to the spatial distribution and magnitude of flood events. To this end, the15

number of different flood events per year in the catchment was analyzed. In 13 years
of the 74-years period, one flood event occurred affecting all 11 sub-basins, whereas
in 18 years no dominant flood event (i.e. four to seven flood events per year) could
be identified. Figure 8 illustrates that in most years (27), three different flood events
caused AMS discharges.20

In Fig. 9 six different flood events at the 11 analyzed gauges and their respec-
tive return periods are shown. The return periods were estimated with the GEV (L-
Moments). Discharges that correspond up to a 10-year peak discharge are mostly
homogenously distributed across the catchment and have similar return periods at the
different gauges. This is shown in the diagrams, which represent the floods in January25

1938, October 1960 and August 1984. Discharges larger than a 10-year peak exhibit
increasing spatial distinctions. This is illustrated in Fig. 9 by the diagrams of the floods
in 1954, 1958 and 2002. Depending on the location of the precipitation field, one or
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the other sub-catchment is more affected during a large flood event.
Figure 10 shows the spatial distribution of the return periods that were calculated for

the observed discharges of the three most extreme flood events (1954, 1958, 2002)
in the Mulde catchment (upper part) and the corresponding areal precipitation events
(lower part). The return period calculated for a certain gauge was assigned to the5

river segment upstream of the gauge. A marked spatial distribution can be seen. For
the flood event in 1954, high return periods were calculated for the western part of the
catchment. This is explained by the rainfall event that had its centre in the western part.
The floods in 1958 and 2002 were caused by precipitation events with their centres east
of, or in the eastern part of the study area. Figure 10 illustrates the direct relationship10

between the location of the precipitation field and the flood return period for the three
events.

4.4 Relationship between precipitation AMS and discharge AMS

The preceding Sect. 4.3 showed that landscape characteristics, such as elevation and
land use, have a minor influence on the statistical flood characteristics. The dominant15

influence seems to be exerted by precipitation and weather characteristics. AMS of
precipitation and discharge were therefore compared to determine how well precip-
itation and discharge AMS coincide. Different precipitation AMS were extracted from
sums of one, two and three days. A time lag of two days between the precipitation event
and the discharge peak was allowed. Table 4 shows the percentages of agreement for20

summer and winter separately for four discharge stations.
During the winter, the precipitation events are not so clearly and directly reflected

in the discharge data (agreement 7–26 %). One reason for this can be found in the
topography of the catchment. During the winter time, large amounts of the precipita-
tion can fall as snow in the Erzgebirge and the water is stored in the snowpack. The25

discharge generation is delayed until melting starts. Therefore, the triggering Großwet-
terlage, which may have brought a major snow cover, cannot be directly related to the
corresponding discharge peak. On the contrary, a direct connection between a large
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summer rain event and a large discharge can be found in the summer throughout the
catchment (agreement 59–89%). Based on these findings the question was posed if
large summer flood events can also be related to a specific circulation pattern. This
question will be answered in the following section.

4.5 Circulation pattern, Großwetterlage and flood generation5

First of all, daily information about the dominating European Großwetterlage between
1911 and 2002 at the gauge Golzern were analyzed. For the entire period, westerly
winds cover about 25% of the total circulation patterns; high pressure weather regimes
cover about 27%. The proportion of the Vb-weather regimes is relatively low with 6.5%.

The analysis of the discharge AMS shows that approx. 60% occur during the win-10

ter time and 40% during the summer time. Only 19 out of the 30 Großwetterlagen
(cf. Table 2) play a role in creating AMS discharges in the Mulde catchment. Thus, 11
out of 30 Großwetterlagen have not created an AMS discharge within the 92 years.
In the winter (November–April), the cyclonal western and north-western Großwetterla-
gen (WA–WW; NWZ) play the dominant role in flood generation, because they account15

for 84% of the AMS winter discharges and 100% for the floods from November un-
til February (see Fig. 11). The summer AMS discharges are generated by several
different Großwetterlagen, though mainly by westerly cyclones (WA-WW), north-east
cyclones (NEZ) and the troughs over central Europe (TM, TRM). Figure 12 illustrates
the distribution of the Großwetterlagen, separately for summer and winter.20

To answer the question, which Großwetterlage is likely to generate large floods in
the Mulde catchment, the flood potential of different circulation patterns was calculated
as probability for a flood quantile HQT , given a certain Großwetterlage:

P
(
HQT |GWLX

)
=

nHQT

nGWLX

(1)

where nHQT
is the number of flood events larger than HQT (e.g. the 10-year flood) that25

have been triggered by a certain Großwetterlage GWLX , whereas nGWLX
is the number
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of days with the corresponding Großwetterlage. It is important to note that already for
small return periods (5 years) the Vb-Großwetterlagen have the highest flood potential
(Fig. 13). Although these Großwetterlagen occur seldom, they are associated with high
discharge peaks. Their flood potential is even more pronounced for floods of larger
return periods. Weather patterns, such as the westerly and north-western cyclones,5

which are responsible for most of the winter AMS discharges, play only an important
role for return periods of max. 10 years.

There exist also Vb-weather regimes that generated floods with low return periods at
the gauge Golzern. However, they often caused high damage in other catchments in
Europe and had their precipitation centre outside the Mulde catchment. This is for ex-10

ample the case for the flood in April 1930 in Bavaria, the August 1984 flood in Switzer-
land, and the flood in July 1997 in the Odra catchment, when the Czech Republic and
Poland were heavily affected (Grünewald et al., 1998; Wasserwirtschaftsamt Bayreuth,
2006).

Analyses of the other gauge stations as well as historical records of large floods in15

the Mulde catchment show similar results with the highest floods being generated by
Vb-weather regimes. From this analysis we can conclude that although Vb-weather
pattern do not occur often in the European weather regime they carry a large flood risk
in the Mulde catchment.

5 Conclusions20

Analyses of discharge series, precipitation fields and flood producing atmospheric
circulation patterns revealed two governing flood regimes in the Mulde catchment in
south-eastern Germany: (1) frequent floods during the winter with generally low return
periods and (2) less frequent floods during the summer, which can reach remarkable
flood peaks. Differences in the statistical parameters skewness and coefficient of vari-25

ation of the discharge data are found in the catchment from west to east, which are
however not reflected in the landscape characteristics such as soil, elevation or land-
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use. It is suspected that the location and the duration of the precipitation field are the
most influencing factors for the discharge.

Annual maximum discharge series were assigned to the triggering Großwetterlage to
evaluate which circulation patterns are likely to produce large floods. It can be shown
that the cyclone Vb-weather regime generates the most extreme flood events in the5

Mulde catchment whereas westerly winds produce frequent and hence small floods.
Vb-weather regimes do not always trigger large flood events in the study area, but
large floods are mostly generated by these weather patterns.

Based on our findings we suggest that the usual approach to estimate large floods
through the FFA should be supplemented by the analysis of landscape catchment char-10

acteristics and especially by the analysis of the flood producing weather regimes. In
view of the climate change it is important to gain information about weather regimes
that trigger large flood hazards in the region of interest and how to integrate this infor-
mation into the flood frequency analysis. Based on these findings, it is then necessary
to revise the traditional FFA approach and develop new approaches which can inte-15

grate different flood triggering processes within the dataset.
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Merz, R., Blöschl, G., and Parajka, J.: Raum-zeitliche Variabilität von Ereignisabflussbeiwerten20
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Table 1. Analyzed discharge gauges in the study area (* stations with one year of missing
values).

Number Gauge Basin area
[km2]

Elevation
[m a.s.l.]

Period of
Measurements

Mean flood dis-
charge [m3/s]

Highest value
of observation
period [m3/s]

1 Aue 1 362 349 1928-2002 66 315
2 Niederschlema* 759 314 1928–2002 111 585
3 Zwickau-

Poelbitz*
1030 255 1928–2002 128 683

4 Wechselburg
1

2107 160 1910–2002 213 1000

5 Streckewalde 206 410 1921–2002 30 145
6 Hopfgarten* 529 357 1911–2002 81 420
7 Pockau 1 385 397 1921–2002 69 449
8 Borstendorf 644 356 1929–2002 91 540
9 Lichtenwalde 1575 253 1910–2002 218 1250
10 Kriebstein

UP
1757 183 1933–2002 231 1350

11 Berthelsdorf 244 377 1936–2002 35 360
12 Nossen 1 585 204 1926–2002 69 690
13 Erlln 2983 133 1961–2002 329 1550
14 Golzern 1* 5442 118 1911–2002 517 2600
15 Bad Dueben

1
6171 82 1961–2002 474 1760
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Table 2. Classification of the circulation patterns and Großwetterlagen.

Großwetterlage
Form of Circulation No. Name Abbr.

Zonal Circulation 1 West wind, anti-cyclone WA
2 West wind, cyclone WZ
3 Southern west wind WS
4 Angular west wind WW

Mixed circulation 5 South-west wind, anti-cyclone SWA
6 South-west wind, cyclone SWZ
7 North-west wind, anti-cyclone NWA
8 North-west wind, cyclone NWZ
9 High pressure system, middle Europe HM
10 High pressure circuit over middle Europe BM
11 Low pressure system, middle Europe TM

Meridional circulation 12 North wind, anti-cyclone NA
13 North wind, cyclone NZ
14 High pressure Iceland, anti-cyclone HNA
15 High pressure Iceland, cyclone HNZ
16 High pressure, British Isles HB
17 Trough Middle Europe TRM
18 North-east wind, anti-cyclone NEA
19 North-east wind, cyclone NEZ
20 High pressure Fennoscandia, anti-cyclone HFA
21 High pressure Fennoscandia, cyclone HFZ
22 High pressure Norwegian Sea-Fennoscandia, anti-

cyclone
HNFA

23 High pressure Norwegian Sea-Fennoscandia, cy-
clone

HNFZ

24 South-east wind, anti-cyclone SEA
25 South-east wind, cyclone SEZ
26 South wind, anti-cyclone SA
27 South wind, cyclone SZ
28 Low Pressure, British Isles TB
29 Trough, Western Europe TRW
30 Transition, no classification U
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Table 3. Monthly absolute frequency of discharge AMS.

Gauge Jan Feb Mar April May June July Aug Sept Oct Nov Dec Sum

Aue 6 3 7 18 6 4 11 6 5 3 2 4 75
Niederschlema 4 4 9 17 6 6 11 5 3 3 1 5 74
Zwickau 3 4 8 15 6 7 12 5 3 3 2 6 74
Wechselburg 11 7 12 8 5 7 16 8 1 2 5 11 93
Streckewalde 9 7 13 14 4 6 14 7 0 3 1 4 82
Hopfgarten 12 9 13 10 6 7 11 6 1 5 1 10 91
Pockau 9 9 14 8 8 5 10 6 2 3 2 6 82
Borstendorf 6 7 15 10 7 4 8 5 1 3 2 6 74
Lichtenwalde 12 13 18 9 6 5 8 8 1 2 1 10 93
Kriebstein 6 8 13 10 5 5 7 5 1 2 1 7 70
Berthelsdorf 5 9 16 5 6 2 7 5 1 1 1 9 67
Nossen 8 12 18 4 5 3 7 5 2 2 2 9 77
Erlln 4 5 11 4 3 1 3 5 1 1 0 4 42
Golzern 13 11 15 8 5 6 10 8 2 3 3 7 91
Bad Düben 4 4 11 5 3 1 4 4 1 1 0 4 42
Sum 112 112 193 145 81 69 139 88 25 37 24 102
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Table 4. Percentages of agreement between precipitation AMS (precipitation sums of 24 h,
48 h and 72 h) and discharge AMS.

24 h 48 h 72 h
Gauge Summer Winter Summer Winter Summer Winter

Wechselburg 65% 7% 61% 7% 70% 10%
Lichtenwalde 88% 20% 88% 7% 71% 14%
Nossen 78 % 15 % 89 % 26 % 83 % 26 %
Golzern 59% 20% 68% 17% 68% 20%
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Fig. 1. Study area Mulde catchment: left: discharge gauge locations (numbered according to
Table 1) and the digital elevation model; right: geographical location in Germany.
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Fig. 2. Spatial distribution of land use in the Mulde catchment.
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Fig. 9. Variation of return periods for six different floods.

621

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/589/2007/hessd-4-589-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
4, 589–625, 2007

Flood hazard and
triggering circulation

patterns

T. Petrow et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 10. Estimated return periods (GEV, L-Moments) for the floods in 1954, 1958, 2002 (period
1929–2002 (above)) and the corresponding precipitation fields (below). Note that for a better
illustration of the spatial distribution the classes of discharge return periods and precipitation
amounts differ.
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Fig. 11. Monthly distribution of AMS discharges at Golzern and the assigned Großwetterlage.
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Fig. 12. Histogram of the Großwetterlagen at the gauge Golzern that generated AMS dis-
charges between 1911 and 2002 (abbr. see Table 2).
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Fig. 13. Flood potential of different Großwetterlagen to cause a flood of a certain return period.
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